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Abstract. Unsteady 1-D slurry flow is analysed in this paper on the bases of available theoretical approaches of homogeneous and heterogeneous solid-liquid Newtonian mixtures. The homogeneous model is widely used in engineering practice, however due to the density difference between solid particles and fluid (and different inertia) the two phases have their own velocities during the unsteady flow regime. Specific attention is focused in the paper on the heterogeneous approach of pipe flow modeling of mutually-penetrating fluid and dispersed solid particles with drag force and inertial interaction by added mass force. A general class of systems of differential equations of averaged motion of low compressible monodisperse suspensions is derived. Characteristics and parametric analyses of the differential equations incorporating real data from engineering practice are done to outline their type. It is revealed that inclusion of a virtual mass model improves the hyperbolic character of the flow equations as well as numerical stability and efficiency. For numerical solution of the initial-and-boundary-value problem of a transient flow a floating-grid characteristics method is adopted by space and time-line interpolations. Corresponding numerical algorithms and codes are developed.  Numerical experiment based on the heterogeneous flow model confirms a real phenomenon of relative slip between the phases occurring during the shutdown period.
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1. INTRODUCTION

The transport of fine-grain solid materials in many industrial applications is often realized as two-phase hydromixture in hydraulic pipeline systems. Besides the steady motion, at exploitation constantly there are of a various unsteady (transient) operational modes, which take place, for example, at starting and stopping of these pipeline systems or change in solid particle concentration. The account of unsteady process allows to supply a stable work of all transport system and step up a reliability and durability of pressure pipelines and all hydraulic equipment. However many important theoretical problems related to this transient processes are unsolved, especially where relative motion between the phases occurs, and related to solid-liquid inertial interaction. The available approaches of homogeneous and heterogeneous solid-liquid flow modeling are analysed here and a simplified mathematical model of mutually-penetrating fluid and dispersed solid particles with different velocities and added mass force is proposed for accounting of inertial effects between the two phases. 
2. HOMOGENEOUS FLOW MODEL

In many engineering applications the homogeneous fluid is a convenient concept for modeling of two-phase solid-liquid mixtures during the transient process in a pipeline. It is a pseudo-fluid that obeys the conventional design equations for single-phase low compressible fluids and is characterized by suitably averaged properties of the liquid and solid phase. The appropriate one-dimensional momentum and continuity equations, generally written in terms of pressure and velocity, are given for horizontal pipe as follow Mass & Alishev (1984), Wylie & Streeter (1978):
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where U is mean velocity of the mixture, Р - pressure, (m = C(s + (1-C)(l  is homogeneous density of the mixture, С – concentration of the solids, (l and (s are liquid and solid density, D – pipe diameter, am – wave speed and f - frictional losses coefficient.
The partial differential equations (1) form a hyperbolic set and are thus amenable to solution by characteristic theory. However because of different inertia of the solid and liquid phases during the unsteady flow regime and relative motion between the phases occurs, the two phases have their own velocities and the homogeneous flow model (1) does not account important effects of inter-phase inertial interactions. 

3. A CLASS OF MATHEMATICAL MODELS (CMM) OF 1-D HETEROGENEOUS SOLID-LIQUID FLOWS

The behavior of dispersed isothermal multiphase flow may be described by a continuum mixture theory proposed by Slezkin (1952), Wallis G. (1969) and others. The solid and liquid phases are treated as interpenetrating continua, using Eulerian approach to compute the flow field. Inter-phase interaction is described in terms of relative slip velocities between the phases. Starting from mass continuity equations of solid particles and liquid flowing in a pipe with cross section A
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where i = l, s corresponds to liquid and solid phase, and assuming linear elasticity of the phases 
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and pipe wall (Ki is the bulk modulus of elasticity), the equations become
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(3) 
where аi, i = l, s is the wave speed of the phases. The relevant momentum equations of the two interpenetrating phases are
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where z is the elevation of the pipe above datum, and the term Fi represents among other drag force. The volume concentrations Сl and Сs of the flow are related by
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If Fi accounts only drag force the partial differential equations (3)-(4) plus algebraic relation (5) form a four equations heterogeneous multiphase solid-liquid flow model, Bechteler & Vogel (1981). It has been established that an unequal velocity (or two-fluid) model as equations (3)-(5) requires consideration of terms describing virtual mass for inertial coupling of the two phases and even interfacial pressure gradient, and that the form of these terms is a function of flow regime Banerjee et al. (1978). The physical significance of the virtual mass is that it represents the sum of the actual mass of a discrete particle plus an added mass to make some allowance for the additional work done in accelerating liquid adjacent to the particle, as well as the particle itself. The assumptions here concerning the flow are that the pressure is uniform throughout the cross section, there is no mass transfer between the phases, there is no particle–particle interactions or collisions, and the two phases are in thermal equilibrium with no heat transfer occurring across the pipe wall. The concept of a virtual mass force can be understood by considering the change of kinetic energy of liquid surrounding an accelerating sphere or solid particle. A part of the liquid will move together with the solid particle. Then the volume concentration of the solid-water hydromixture that is moving with the solid velocity Us is
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The rest undisturbed liquid is moving with velocity Ul
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where m is added mass coefficient (volume of liquid to unit solids volume). It is rather difficult to determine m and usually it is taken as 0.5 for spherical particle or linearly dependent of the solid concentration, Bechteler & Vogel (1982), Bournaski (2012)

m = K1+ K2Cs ,  
where K1 = 0.5, K2 =0.25




(8)

Then the continuity equation of the liquid includes the two velocities Ul and Us, or the volume flux (Cl – m Cs)Ul + mCs Us.
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where 
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. Having in mind (6) the momentum equation (3) for the liquid is


[image: image11.wmf]0

)

(

)

)

((

=

+

+

¶

¶

+

¶

¶

+

-

+

¶

¶

l

l

l

l

l

l

s

s

l

s

l

l

l

l

l

F

dx

dz

g

C

x

P

C

x

U

U

mC

U

mC

C

t

U

C

r

r

r

r

(10)
Usually their is not high solid concentration in engineering practice of pipeline hydrotransport and to simplify the equation (9) we may assume Cl ≈ 1 in the convective term of pressure gradient and in the term of volume-flux gradient because their influence is small. Here Cl can be excluded (because Cl = 1 – Cs) and Cs to be denoted further by С. To check the importance of some of the equation terms like convective derivatives and others we introduce secondary coefficients hi (hi = 0 or 1), i=1,2,3 and equation (9) becomes:
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Because the solid particles move only with their own velocity Us, the equation of continuity remains (3)
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(12)
The momentum equations of the liquid (10) and the solid phases (4) with the virtual mass effect are
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where 
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  is an average density of the hydromixture with concentration 
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 and the terms Fl/s represent interfacial drag force with empirical Stocks coefficient and wall-friction force with empirical friction coefficient but not virtual mass force. The system of equations (11)-(14) represents a class of mathematical models (CMM) of 1-D heterogeneous solid-liquid flows with virtual mass effect, Bournaski (2012). By choosing appropriate composition of hi is possible to represent different physical phenomena in the model, for example (h1,h2,h3)=(0,1,1) means omission of convective derivatives in equations (11)-(14), etc.

There is another approach of including inertial coupling of the two phases by virtual mass force fm  = mρlW  not treated here, where the virtual mass acceleration W is given by different expression in the literature, Drew et al. (1979), Thorley and Wiggert, (1985), Bournaski (2012), and fm is participating in the term Fl and Fs in both liquid and solid momentum equation (4) as equal in magnitude but opposite in direction.
4. CHARACTERISTICS AND PARAMETRIC STUDIES OF THE MODELS

Similar theoretical analysis of two-phase pipe flow of air-water mixtures is done by Lyczkowski et al., (1978), Thorley and Wiggert, (1985) and others. Here is done for solid-liquid mixtures described by the formulated equations (11)-(14) which can be written in the following matrix quasi-linear form:
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where A and B are respective quadratic matrixes  4 х 4 and Y is vector of the search solution YT = (Us, Ul, P, C).

According the theory of partial differential equations, if the roots of the characteristics determinant 

det 
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(16)
are real, then the system (15) is hyperbolic type. 

If m is determined by (8), the CMM (11)-(14) has four real analytical roots of (16), Bournaski (2012). It is instructive to examine the influence of certain parameters and hyperbolic type of the model for a typical engineering system using realistic pipeline data from practice. For example, in the following discussions are used solid-water pipe flow data from Makharadze & Kirmelashvilli (1986):
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where Kl/s is module of elasticity water and solids; D – internal pipe diameter; δ – wall tickness; μ – pipe-fixing coefficient. Calculated pressure wave speeds of this system are al = 1153 m/s and as = 1055 m/s, or al = 1372 m/s and as = 1794 m/s for second set of μD / δ. The characteristics roots are calculated for many situations of CMM. Two of these are of a similar magnitude and correspond to the propagation speed of the main transient pressure (water hammer) waves, Table 1. They can be termed “primary roots”. The other two roots, which are of magnitude close to the individual phase velocities, could be termed “secondary”, Table 1. An evaluation of the Table 1 shows, that the virtual mass force changes the eigenvalues of the system of partial differential equations being solved 
Table 1
Primary and secondary roots of some CMM models using 

realistic pipeline data from engineering practice with two concentrations C
	h1


	h2


	h3


	m


	(K1,


	K2)


	ν1


	ν2


	ν3


	ν4



	

	C = 0.2

	1
	1
	1
	0
	(0,
	0)
	1057
	-1053
	18.0
	-10.5

	1
	1
	1
	0.25
	(0.2,
	0.25)
	1129
	-1125
	20.2
	-12.2

	1
	1
	1
	0.55
	(0.5,
	0.25)
	1197
	-1193
	22.3
	-13.7

	1
	1
	1
	0.8
	(0.7,
	0.25)
	1242
	-1238
	23.9
	-14.7

	1
	0
	0
	0
	(0,
	0)
	1057
	-1053
	5.4
	2.1

	0
	0
	0
	0
	(0,
	0)
	1055
	-1055
	0
	0

	

	C = 0.4

	1
	1
	1
	0
	(0,
	0)
	1057
	-1053
	19.5
	-9.5

	1
	1
	1
	0.55
	(0.45,
	0.25)
	1197
	-1193
	25.1
	-12.1

	1
	0
	0
	0.55
	(0.45,
	0.25)
	1197
	-1193
	9.4
	1.9

	0
	1/0
	0
	0
	(0,
	0)
	1055
	-1055
	0
	0

	0
	1
	0
	0.6
	(0.5,
	0.25)
	1205
	-1205
	1.8
	0

	1
	1
	0
	0.6
	(0.5,
	0.25)
	1207
	-1203
	10.9
	2.4

	1
	1
	0
	0
	(0,
	0)
	1057
	-1053
	8.1
	1.8

	0
	0
	1
	0.6
	(0.5,
	0.25)
	1205
	-1205
	18.4
	-18.4

	0
	0
	1
	0
	(0,
	0)
	1055
	-1055
	14.1
	14.1


CMM (11)-(14), especially it increases hyperbolicity of the equations by two real secondary roots. Similar effect has with this data the inclusion of convective terms (derivatives) in the governing equations, as well as the term 
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 in the momentum equations.  

All these characteristics roots are basis of the successful numerical solution of the equations and calculation of the propagation speeds of transient pressure and solid-liquid fraction.

5. NUMERICAL IMPLEMENTATION AND CALCULATION

In industry the solid-liquid slurries usually contain small quantity of free gas or air, which even small strongly affects the transient process, Makharadze & Kirmelashvilli (1986). Here for numerical analysis of the flow, the described four equations CMM (11)-(14) is extended to five equation model by adding continuity equation of gas, Bechteler & Vogel (1982), Bournaski (1992, 2012). The gas-phase momentum is negligible compared with liquid and solids momentum, and the gas is assumed to move mainly with the solids and has not own velocity. The transient problem with initial and boundary conditions relevant to the real slurry pipeline system is solved by the method of characteristics as most suitable for differential equations of hyperbolic type. The set of governing equations is transformed into five ordinary differential equations, and then they are solved by finite difference method using time-line approximation on previous time steps and space-line approximation along the x axis, Bournaski (2012), known as floating-grid characteristics method. Pressure wave speeds and propagation speeds of solid and liquid concentrations are time and space dependant, and also pressure dependant because of the available free air in the slurry. All these require suitable iteration procedure for the solution of finite-difference equations. For the need of engineering practice a special software of the transient problem was developed in Bulgarian Academy of Sciences, Sofia. The input data of the software are conditionally divided into three computer files - for the pipe system characteristics, for the slurry properties, and for the model parameters. A part of a typical output result is shown on Figure 1 for 3000 m long still pipeline of 0.8 m diameter conveying solid-water slurry from a distant centrifugal pump to a valve and a reservoir. 
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Fig. 1. Calculated pressure, liquid and solids velocities of slurry at 150 m upstream of the valve after closing the valve.
6. DISCUSSION AND CONCLUDING REMARKS

The numerical experiment shown on Figure 1 is for equal steady state velocities of water and solid particles Us = Ul at t = 0, and have been done to verify the described by Kao & Wood (1978) phenomenon occurring during the shutdown period. When the valve is completely closed the net flow of the slurry near the valve is zero, but due to density differences, the liquid and solids are moving in opposite directions. Dense solids continue to move downstream for a short time, while the liquid reverses its direction and flows upstream. This is accompanied by increasing the pressure into the pipe. The numerical result confirms this phenomenon, Figure 1.

The hydraulic approach described here for planning, design optimization and operation of hydraulic conveying of slurries by pipelines is based on heterogeneous solid-liquid flow modeling. The phases are treated as interpenetrating continua, and the Eulerian approach is used to compute the mixture flow field. Inter-phase interaction in the model is described in terms of relative slip velocities between the phases prescribed algebraically as interfacial drag force with empirical Stocks coefficient, while inertial interaction or coupling of the two phases is described by virtual mass force. In engineering practice there is small quantity of free gas or air in the slurries and that is why it is recommended to be included in the model. As is mentioned by other authors, here is confirmed that the virtual mass force changes the eigenvalues of the differential equations, increases hyperbolicity of the equations, and improves the computation efficiency. The class of mathematical models (CMM) of is suitable to represent different physical phenomena of the flow, for loading and unloading of pipelines of dispersion materials, starting and stopping of hydraulic pipeline systems, water hammer, connection of intermediate pump stations and others. 
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